
Printing:
This	poster	is	48”	wide	by	36”	high.	
It’s	designed	to	be	printed	on	a	
large

Customizing	the	Content:
The	placeholders	in	this	
formatted	for	you.	
placeholders	to	add	text,	or	click	
an	icon	to	add	a	table,	chart,	
SmartArt	graphic,	picture	or	
multimedia	file.

T
from	text,	just	click	the	Bullets	
button	on	the	Home	tab.

If	you	need	more	placeholders	for	
titles,	
make	a	copy	of	what	you	need	and	
drag	it	into	place.	PowerPoint’s	
Smart	Guides	will	help	you	align	it	
with	everything	else.

Want	to	use	your	own	pictures	
instead	of	ours?	No	problem!	Just	
right
Change	Picture.	Maintain	the	
proportion	of	pictures	as	you	resize	
by	dragging	a	corner.

Slowdown	Cascades	in	
Eiger (NSDI	‘13)

Replicated	write	buffers	grow	
arbitrarily	because	Eiger enforces	
consistency	inside	the	datastore

I	Can’t	Believe	It’s	Not	Causal!	
Scalable	Causal	Consistency	with	No	Slowdown	Cascades

Syed	Akbar	Mehdi,	Cody	Littley and	Natacha	Crooks,	UT	Austin;	Lorenzo	Alvisi,	UT	Austin	and	Cornell; Nathan	Bronson, Facebook;	Wyatt	Lloyd,	USC

PROBLEM

14th	USENIX	Symposium	on	Networked	Systems	Design	and	Implementation	(NSDI	’17)

W1

Datacenter	A Datacenter	B

Applied	?W2

Applied	?W1

W2

W3

DelayedW1

Writes	causally	ordered	as	𝑾𝟏 → 𝑾𝟐 →𝑾𝟑

Buffered

Buffered

Slowdown	Cascade	Example

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500

Bu
ffe

re
d 

Re
pl

ica
te

d 
W

rit
es

Replicated writes received

Normal Slowdown

SOLUTION

Key	Adoption	Hurdle:	Slowdown	Cascades

Enforce

Consistency

Implicit	Assumption	of
Current	Causal	Systems Reality	at	Scale Slowdown	Cascade

Wait

Wait

In	Practice

• The	largest	web	applications	use	
eventually	consistent	datastores

• Examples:

Causal	Consistency

Causal	Consistency
Eventual	Consistency

Strong	Consistency

Hi
gh

er
	P
er
f.

Stronger	Guarantees Espresso TAO Manhattan

In	Theory

Causal Consistency guarantees that each client observes a 
monotonically non-decreasing set of updates (including its own) 
in an order that respects potential causality between operations

Observable	Causal	Consistency

Key	Idea:	
Don’t	implement	a	causally	consistent	data	store
Let	clients	observe a	causally	consistent	data	store

Implementing	Observable	Causal	Consistency

1. Our	solution	is	a	system	called	OCCULT	(Observable	Causal	
Consistency	Using	Lossy Timestamps)

2. Each	client	maintains	metadata	(called	a	Causal	Timestamp)	
to	encode	the	most	recent	snapshot	of	the	datastore it	has	
observed

3. Writes	replicate	asynchronously	without	any	buffering

4. On	reads	clients	use	the	causal	timestamp	to	detect	whether	
a	shard	is	safe	to	read	from

8 3 2a

8 5 5

8

Master

Slave

7

Master

Slave

Slave

Master

5 5

8 8

8 3 2
Client	1

Client	2

Client	3

8 5 5

8 3 2a

8 5 5b 8 5 5b

≥ ?7 8
Stale	Shard	!

Delayed!

Datacenter	A Datacenter	B

Example Causal	Timestamp	Compression
1. Use	local	clock	of	a	partition	to	increment	

shardstamps.

a) Keeps	shardstamps loosely	synchronized	
despite	varying	write	rates	on	shards

2. Use	high	resolution	for	recent	shardstamps
and	conflate	the	rest

4000 3989 3880 3723 3678Shardstamps

Shard	IDs

Catch-all
shardstamp

45 89 34 123 *

Scalable	Distributed	Transactions
1. Occult	is	the	first	casual	system	to	support	general	purpose	

read-write	transactions	!
a) And	still	no	slowdown	cascades	!

2. Transactions	have	the	following	properties:
a) (Observable)	Atomicity
b) (Observable)	Reads	from	a	casually	consistent	snapshot
c) No	concurrent	conflicting	writes

3. Transactions	are	scalable
a) No	centralized	timestamp	authorities	(or	sequencers)	!	

Transactions	are	ordered	using	causal	timestamps

b) Transaction	commit	latency	is	independent	of	the	number	of	
replicas !

1

2

c	=	[Bob,	Cal]
2

c	=	[Bob,	Cal]

a	=	[Abe]

Master

Master

1

b	=	[]

a	=	[]
0

b	=	[Bob]

Master

Slave

Slave

Slave

2 1

2

1 2 2 1 2 2

Datacenter	A Datacenter	B

1 2 2 0 1 0

1 2 2 1 2 2

Start	T1
r(a)	=	[]

w(a	=	[Abe])
Commit	T1

Start	T2
r(b)	=	[Bob]
r(c)	=	[Cal]
w(b	=	[])

w(c	=	[Bob,	Cal])
Commit	T2

1 0 0

Start	T3
r(b)	=	[Bob]

r(c)	=	[Bob,Cal]

Delayed!

Delayed!

T3 Read	Set
b	=	[Bob]

0 1 0
c =	[Bob,	Cal]

1 22

Transactions	Example Evaluation

Goodput evaluated	on	a	heavily	contended,	
zipfian,	read-heavy	YCSB	workload

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

2 4 6 8 10 12 14 16 18 20

Go
od

pu
t	(
m
ill
io
n	
op

s/
s)

Num	Ops	per	Transaction	(Tsize)

Occult	Transactions
Occult	Single-Key
Redis	Cluster

8.7%

31%
39.6%

OCCULT	implemented	by	modifying	Redis Cluster
Evaluation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 200 400 600 800 1000 1200
Microseconds

Redis	Cluster Occult

50	us	rise	in	median	latency	

400	us	rise	in
99th percentile	latency

Latency	Overhead	over	Redis Cluster	


