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Slowdown	Cascades	in	
Eiger (NSDI	‘13)

Replicated	write	buffers	grow	
arbitrarily	because	Eiger enforces	
consistency	inside	the	datastore

I	Can’t	Believe	It’s	Not	Causal!	
Scalable	Causal	Consistency	with	No	Slowdown	Cascades

Syed	Akbar	Mehdi,	Cody	Littley and	Natacha	Crooks,	UT	Austin;	Lorenzo	Alvisi,	UT	Austin	and	Cornell; Nathan	Bronson, Facebook;	Wyatt	Lloyd,	USC
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Slowdown	Cascade	Example
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In	Practice

• The	largest	web	applications	use	
eventually	consistent	datastores

• Examples:

Causal	Consistency

Causal	Consistency
Eventual	Consistency
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In	Theory

Causal Consistency guarantees that each client observes a 
monotonically non-decreasing set of updates (including its own) 
in an order that respects potential causality between operations

Observable	Causal	Consistency

Key	Idea:	
Don’t	implement	a	causally	consistent	data	store
Let	clients	observe a	causally	consistent	data	store

Implementing	Observable	Causal	Consistency

1. Our	solution	is	a	system	called	OCCULT	(Observable	Causal	
Consistency	Using	Lossy Timestamps)

2. Each	client	maintains	metadata	(called	a	Causal	Timestamp)	
to	encode	the	most	recent	snapshot	of	the	datastore it	has	
observed

3. Writes	replicate	asynchronously	without	any	buffering

4. On	reads	clients	use	the	causal	timestamp	to	detect	whether	
a	shard	is	safe	to	read	from
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Example Causal	Timestamp	Compression
1. Use	local	clock	of	a	partition	to	increment	

shardstamps.

a) Keeps	shardstamps loosely	synchronized	
despite	varying	write	rates	on	shards

2. Use	high	resolution	for	recent	shardstamps
and	conflate	the	rest
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Scalable	Distributed	Transactions
1. Occult	is	the	first	casual	system	to	support	general	purpose	

read-write	transactions	!
a) And	still	no	slowdown	cascades	!

2. Transactions	have	the	following	properties:
a) (Observable)	Atomicity
b) (Observable)	Reads	from	a	casually	consistent	snapshot
c) No	concurrent	conflicting	writes

3. Transactions	are	scalable
a) No	centralized	timestamp	authorities	(or	sequencers)	!	

Transactions	are	ordered	using	causal	timestamps

b) Transaction	commit	latency	is	independent	of	the	number	of	
replicas !
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Transactions	Example Evaluation

Goodput evaluated	on	a	heavily	contended,	
zipfian,	read-heavy	YCSB	workload
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Occult	Transactions
Occult	Single-Key
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OCCULT	implemented	by	modifying	Redis Cluster
Evaluation
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