[Can't Believe It's Not Causal!
Scalable Causal Consistency with No Slowdown Cascades

Syed Akbar Mehdi, Cody Littley and Natacha Crooks, UT Austin; Lorenzo Alvisi, UT Austin and Cornell; Nathan Bronson, Facebook; Wyatt Lloyd, USC
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI "17)

PROBLEM

Slowdown Cascade Example Slowdown Cascades in
o = [
Key Adoption Hurdle: Slowdown Cascades Eiger (NSDI"13)
= g \
Causal Consistency 4 ! B W - Deiayed E | 1200
| 4
In Theory In Practice : : g 1000
ait : J' T 800
.. ® Eventual Consistency * The largest web applications use Enforce | | g 600
+ ® Causal Consistency eventually consistent datastores _ . | <00
. e Examples: Consistency ! : 2
o | | £ 200
& ® Strong Consistency m n y Qit | | 2
= .
. I , 0 500 1000 1500 2000 2500
R I I Replicated writes received
f Espresso TAO Manhattan E —Normal —Slowdown
Stronger Guarantees P Implicit Assumption of ot o \ | : Normal —Slowd
Current Causal Systems eality at >cale A o) (e o | T, ' Replicated write buffers grow
IDatacenter Al / . . .
N arbitrarily because Eiger enforces
Writes causally orderedas W; > W, - W, consistency inside the datastore
_ _ _ Causal Timestamp Compression
Observable Causal Consistency Implementing Observable Causal Consistency \ \ - .
| (| 7| >8] - 1. Use local clock of a partition to increment
l
: : | | shardstamps.
Causa}l (ljlonSIStCIIICY HTELETTIEES tfhat ;:ach ?lefllt gfaser vesa) 1. Our solution is a system called OCCULT (Observable Causal 2| ' [a[8]3]2], ! Stale Shard ! P
monotonically non-decreasing set of updates (1ncluding its own Consistency Using Lossy Timestamps) | | 7 _
in an order that respects potential causality between operations 832 Master : Delayed! | Slave : 4 a) Keep_s shard_stamp§ loosely synchronized
: . : l despite varying write rates on shards
2. Each client maintains metadata (called a Causal Timestamp) Client 1 : 15 :
to encode the most recent snapshot of the datastore it has ' r(b)
e — E 3/5(5 | ' 'b|8]5]5 =) 81515 2. Use high resolution for recent shardstamps
Key Idea: . ! | | Client 3 and conflate the rest
Don’t implement a causally consistent data store 3. Writes replicate asynchronously without any buffering 3155 /, WA | : — :
l
. . _ | | | | 18 | Shardstamps | 4000 | 3989 372{ ’Catch_a"
Let clients observe a causally consistent data store 4. On reads clients use the causal timestamp to detect whether Client 2 | | | | {hardstam
a shard is safe to read from | | | | Shard IDs a5 | 89 -E- >
| Slave | ! Master |
_ Datacenterd _ DatacenterB '
Scalable Distributed Transactions Transactions Example Evaluation Evaluation
1. Occult is the first casual system to support general purpose OCCULT implemented by modifying Redis Cluster
read-write transactions ! S EEses= ~ S EEses= ~ 1.6 1 &—4
! &l \ o]) = 1.4 x 0.9 —’
a) And still no slowdown cascades ! | l | l <4 18.7% 0.8 400 us rise in
| a=[Abe] : : a=] : 21.2 3% 0.7 99th percentile latency
2. Transactions have the following properties: 122 ' [1]oJo] ' nDelayear | | 122 s 1 _ — 39.6% 0.6 o _
a) (Observable) Atomicity e [master R — T8 o - oo S—s g4 > S ps tise ifrmediajr fatency
b) (Observable) Reads from a casually consistent snapshot Start T, : 2 ! [! Start T, = 0.6 B0ceult Transhehians 03
= = - I I ° .
c) No concurrent conflicting writes r(a) =[] : b=] : : b=[Bob] ! : rlb)=[Bob] : 202 —Occult Single-Key 0.2
- wla=[Abe]) | 1122 | Delayed! | ol1]o] | | r(c) = [Bob,Cal] ; S 0.2 —Redis Cluster 0.1
3. TransaCtionS are Scalable CommItT1 i : I : Sammsmmsmmaamaasmasmasmasmssmesmssmaaast O V. 0
. . . | Master | Slave 0 0 200 400 600 800 1000 1200
a) No centralized timestamp authorities (or sequencers) ! Start T, . : ! : - ~ , , , .
Transactions are ordered using causal timestamps . r(b) = [Bob] | (2 : | [2 || Ti Ee["’l';;')ﬁf“ | 4 6 8 10 12 14 16 18 20 Microseconds
. r(c)=[Cal] ' c=[Bob,Cal] | ' c=[Bob,Cal] ! SEAn Num Ops per Transaction (Tg;) ARedis Cluster B0ccult
b) Transaction commit latency is independent of the number of wlb=[]) 1 1]2]2 : C[1]2]2 : c = [Bob, Call Goodput evaluated on a heavily contended, :
replicas ! . w(c = [Bob, Cal]) i ! Viaster : | S : , A Latency Overhead over Redis Cluster
Commit T, I\ Datacenter A /' \ Datacenter B /' \2 1 IZIZ/ Z|pf|an, read-heavy YCSB workload

